
So, basically:

1. At JS level, any function, say for example:
 function myfoo() { }

has a prototype property (in it’s dictionary) that points to a shared object.
This object is in variable search scope of all objects created via the new
operator, like:

 var f1 = new foo()

The prototype/shared object is similar to a superclass static class variable in
say, Java (of type Map). All instances (f1, f2, etc) have access to the same
superclass Map automatically.

This scope is shown in yellow/orange in the above diagram.

2. function themselves are *also* presented as "objects" in JS. These
function objects are created by a JS "Function" creator , so functions also
have their own shared static superclass Map (common to all functions)

This scope is shown in red in the above diagram.

Note 1 : the red and orange chains are separate.

Note 2: both scopes (whether or functions or simple objects) end at the
prototype for "Object", so anything set in Object.prototype is visible to
everything in the system (unless over-ridden/shadowed by the same
property in a particular object).

JavaScript Object Layout (perspective 2) [Hursh Jain/mollypages.org]

Interpreter Startup

(my own simplified assumption…implementations will differ)

create JS environment objects and functions (in lower level
interpreter code) and also make them "visible" to JS code (as JS
Objects)

JS name: "Object"
dictionary: […]

interpreter: function

JS name: "Function"
dictionary: […]

interpreter: function Interpreter Internals

JS interpreter code
of Object, Function, etc

All objects can contain arbitrary
key/value pairs (maps/dictionary)

1

parse a webpage for all scripts and
script fragments (also create JS
objects representing the HTML DOM
internally)

2

JS name: "myfoo"

parse/run code:

function myfoo(){
 …
 }

interpreter: function

dictionary: […]

3

var f1 = new foo()

dictionary: […]

4 after everything is wired up

dictionary: […]

prototypeconstructor

dictionary: […]

prototype
constructor

dictionary: […]
f1

dictionary: […]
f2

effectively, a superclass
"static" dictionary from

our objects f1, f2, ..
perspective

__proto__
__proto__

__proto__

__proto__

If (for example) using Java to
implement the JS interpreter, we
could have a JSObject class that
internally has a Map to store arbitrary
data. We could subclass JSObject to
create JSFunction, which then
additionally could have interpreted
code associated with it.

objects

Function name: "Object"

dictionary: […]

prototypeconstructor

Function name: "Function"

dictionary: […]

JSObject (dictionary)

Function name: "myfoo"

dictionary: […]

As always, the 2 best sources of information are:

1. Mozilla developer documentation (mozilla.org)
2. JavaScript: The Definitive Guide, by David Flanagan

__proto__

dictionary: […]
contains

function code

a static superclass
dictionary for all

functions

__proto__

__proto__

https://developer.mozilla.org/en-US/

