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(my own simplified assumption...implementations will differ)
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So, basically:

1. At JS level, any function, say for example:
function myfoo() { }

has a prototype property (in it’s dictionary) that points to a shared object.
This object is in variable search scope of all objects created via the new

operator, like:

var f1 = new foo()

The prototype/shared object is similar to a superclass static class variable in
say, Java (of type Map). All instances (f1, f2, etc) have access to the same

superclass Map automatically.

This scope is shown in yellow/orange in the above diagram.

2. function themselves are *also* presented as "objects" in JS. These
function objects are created by a JS "Function" creator , so functions also
have their own shared static superclass Map (common to all functions)

This scope is shown in red in the above diagram.

Note 1 : the red and orange chains are separate.

Note 2: both scopes (whether or functions or simple objects) end at the
prototype for "Object", so anything set in Object.prototype is visible to
everything in the system (unless over-ridden/shadowed by the same
property in a particular object).

As always, the 2 best sources of information are:

1. Mozilla developer documentation (mozilla.org)
2. JavaScript: The Definitive Guide, by David Flanagan


https://developer.mozilla.org/en-US/

