[

JavaScript Object Layout (perspective 2) [Hursh Jain/mollypages.org]

(my own simplified assumption...implementations will differ)

Interpreter Startup
@ create JS environment objects and functions (in lower level
interpreter code) and also make them "visible" to JS code (as JS
Objects) o S
e — -

\

1

1

‘\\ Interpreter Internals

\

interpreter: function interpreter: function

JS name: "Object" JS name: "Function" . JS interpreter code
dictionary: [...] dictionary: [...] of Object, Function, etc

All objects can contain arbitrary

key/value pairs (maps/dictionary)
parse/run code:

@ parse a webpage for all scripts and function myfoo () {
script fragments (also create JS YA
objects representing the HTML DOM / }
internally)
interpreter: function ,/ __.--var fl = new foo()
JS name: "myfoo" .-~ 7 objects
e tl -
dictionary: [...] ! ,,’
/ contains

---" function code

@ ! If (for example) using Java to
/ implement the JS interpreter, we
could have a JSObject class that
3 internally has a Map to store arbitrary
it . » data. We could subclass JSObject to
CIEETETTR oo create JSFunction, which then
additionally could have interpreted
code associated with it.

JSObject (dictionary)

@ after everything is wired up
__proto__

Function name: "Object" Function name: "Function"

dictionary: [...] dictionary: [...] \

\ ' N
\ 1

constructor ~ Prototype __Proto__

constr\uctor prototype
\\ / \\ '/
__proto__
dictionary: [...] o ~~||dictionary: [...]

)/‘
__proto__ 1
a static superclass

/\ —proto__ dictionary for all
functions

Function name: "myfoo"

dictionary: [...]

\

. \
\

\ 1

\

rototype
constructor P ; yP
= y effectively, a superclass
dictionary: [...] I "static" dictionary from
our objects f1, f2, ..
perspective
__proto__
__proto__
dictionary: [...] dictionary: [...]
So, basically:

1. At JS level, any function, say for example:
function myfoo() { }

has a prototype property (in it’s dictionary) that points to a shared object.
This object is in variable search scope of all objects created via the new

operator, like:

var f1 = new foo()

The prototype/shared object is similar to a superclass static class variable in
say, Java (of type Map). All instances (f1, f2, etc) have access to the same

superclass Map automatically.

This scope is shown in yellow/orange in the above diagram.

2. function themselves are *also* presented as "objects" in JS. These
function objects are created by a JS "Function" creator , so functions also
have their own shared static superclass Map (common to all functions)

This scope is shown in red in the above diagram.

Note 1 : the red and orange chains are separate.

Note 2: both scopes (whether or functions or simple objects) end at the
prototype for "Object", so anything set in Object.prototype is visible to
everything in the system (unless over-ridden/shadowed by the same
property in a particular object).

As always, the 2 best sources of information are:

1. Mozilla developer documentation (mozilla.org)
2. JavaScript: The Definitive Guide, by David Flanagan

https://developer.mozilla.org/en-US/

