
class foo object f1

(instance of foo)

foo() {
 bar();
 }

bar() {
 baz();
 }

f1.foo()

this
=> f1

baz() {
 }

this is automatically propogated.

We DO NOT HAVE to say this.bar() and
this.baz() to keep track of this down
the line, in those further methods.
(although we could say it, if we wanted to,
but not needed).

Static methods are invoked on the class
(not object) and have no this pointer at
all. Note, in Java, methods belong to the
class. In JS, methods belong to an object
(or it's prototype).

function
foo

this is NOT automatically propogated,
even when bar and baz are properties/
functions of the instance f1

We DO HAVE to say this.bar() and
this.baz() to keep track of this down the
line, in those further methods.

Since, biff() is invoked without an explicit
this, this refers to the window and not
to f1 inside biff (even though biff is a
property/method of the object f1).

this always(*) refers to the original
object through which the method was
invoked (this can be easy to loose track in
JS). In this example, object f1.

 (*) the only exception is the JS5 "bind"
method which can permanently change
this to another object

"this" propogation in Java and Javascript
hursh jain/mollypages.org

object f1

(constructed
via foo)

foo() {
 this.bar();
 }

bar() {
 this.baz();
 biff();
 }

f1.foo()

this
=> f1

baz() {
 }

pr
op

er
tie

s
(m

et
ho

ds
) o

f
ob

je
ct

 f1
 [o

r i
t's

 p
ro

to
ty

pe
]

biff() {
 }

this
=> window

m
et

ho
ds

 o
f

cl
as

s
fo

o
Java

JavaScriptcreate

